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Abstract—We propose an algorithm to test the robustness
to parameter variation of complex nonlinear models with many
parameters. Our test exploits bifurcation analysis and numerical
continuation to accurately follow an orbit as parameters are
changed, and continuous optimization to move towards the closest
bifurcation point to the nominal parameters value.

I. INTRODUCTION

Virtually all physical phenomena are nonlinear, but for
many practical matters the Hartman Großman theorem allows
to simplify the analysis of asymptotic dynamics through lin-
earization about an equilibrium point. New applications in biol-
ogy, robotics, and electronics however are starting to break this
comfortable paradigm. Cell dynamics, animal and bio-inspired
locomotion, power networks and converters all share a pref-
erence for non-equilibrium configurations, where the relevant
dynamics is dominated by limit cycles or transitions between
rapidly changing dynamically stable regimes. What is more
important, the frontiers of science have moved past the point
where a qualitative understanding of the basic phenomena
was sufficient. Modern technology allows to design, construct
and control gene networks, living-like robotic creatures and
complex networks of interacting electronic components, and a
precise quantitative analysis of their behaviour is required for
such a design and control.

When non-equilibrium states are involved, the task of
assessing a model’s robustness to a change in parameters is
particularly challenging. Robustness, meaning the likelihood
of a qualitative change in the system’s dynamics as a result of
a change in parameters, is a measure of the resilience of the
model’s behaviour to errors in the estimation of the parameters
(this is relevant for example in synthetic biology, where
precise parameter estimation is extremely challenging and time
consuming), and can be used to validate a model by showing
agreement with its physical counterpart throughout a wide
range of operating conditions [1]–[4]. Rigorously speaking,
robustness is a feature typically attributed to a specific orbit
of a system (the concept of orbit is formally introduced in
the next section), rather than to its global dynamic structure.
This is because qualitative changes in the global dynamics
of a large nonlinear system can often affect features that are
irrelevant to the model’s purpose. Robustness of a nominal
orbit can be evaluated by measuring its distance in parameter
space from the boundaries of its region of existence. These
boundaries are the bifurcation points of the orbit. Bifurcation
theory is a very well developed subject in nonlinear dynamics.
Efficient numerical tools are available to conduct bifurcation
analysis in one and two parameters for nonlinear systems

of very large dimension, and their use to assess a model’s
robustness is well established [5], [6]. Common bifurcation
analysis techniques however are only practically useful to
study an orbit’s dependence on one or two parameters.

To circumvent this limitation different approaches have
been attempted. Monte Carlo techniques, which estimate the
region of existence of a trajectory by testing a randomized
sample of parameter values, have been used for example in [7].
These techniques can mitigate, but not avoid the exponential
growth of complexity with the parameter dimension of a
model. Moreover, being based on a randomized sampling
of parameters, they are susceptible to attractor hopping as
different parameter sets are chosen in complex nonlinear
systems: these often exhibit multiple coexisting attractors, and
the numerical convergence towards two qualitatively similar
orbits at different parameter values does not guarantee that
these orbits are homotopic, that is, that they transform into one-
another as parameters are continuously changed. Structured
Singular Value analysis has been used to obtain estimates of
the robustness of equilibria or limit cycles to simultaneous
variations of multiple parameters [5]. This technique is based
on a linearisation of the dynamics, therefore it cannot account
for the effect of nonlinearities, and the results are only valid
within a sufficiently small neighbourhood of the nominal orbit
in parameter space. Bifurcation analysis, coupled with Sequen-
tial Quadratic Programming, has been used in [8] to bound
the distance in parameter space of an equilibrium from a Hopf
bifurcation, deducing robustness of a limit cycle that is gen-
erated through the Hopf bifurcation. This technique is numer-
ically efficient and naturally suitable to handle nonlinearities.
However, in general the Sequential Quadratic Programming
step may suffer from the attractor hopping problem highlighted
before (as parameters are changed at discrete steps), while the
detection of the Hopf bifurcation does not exclude that the
limit cycle disappears earlier due to other bifurcations, or that it
persists past the bifurcation due to a more complex bifurcation
structure (for instance in the presence of a complex structure
of fold bifurcations and coexisting limit cycles). Many of these
problems are avoided by using continuation techniques, as
proposed in [9], which allow to numerically follow an orbit
(for example an equilibrium or limit cycle) as parameters are
changed. In [9] the authors compute an orthogonal basis in
parameter space aligned with the direction of steepest increase
of the maximum modulus of the Floquet multipliers. The
use of continuation along the directions of this basis’ vectors
allows to follow the desired orbit in parameter space with
high accuracy, making it unlikely to hop between different
unrelated orbits at different points in parameter space, while

978-1-4799-8391-9/15/$31.00 ©2015 IEEE 1702



the choice of n orthogonal continuation directions in the n-
parameter system provides a good overview of the structure of
the region of existence of such an orbit. However, especially in
high-dimensional parameter space, the axes alignment chosen
in [9] may greatly overestimate the closest bifurcation point,
due to the nonlinear dependence of the Floquet multipliers on
the model’s parameters.

In this work we introduce some preliminary results on an
improvement of the above cited methods, obtained by taking a
continuation-based approach (as in [9]) as a step of a contin-
uous optimization algorithm, to search the closest bifurcation
point to a nominal set of parameters. Continuous optimization
of nonconvex functions is in general a difficult problem, but
the test performed so far suggest that the region of existence
of an orbit often has fairly simple geometry, and despite the
lack of a formal guarantee the optimization approach appears
to frequently find the correct global optimum, thus providing
a tight upper bound on the maximum allowable perturbation.
Moreover, the use of numerical continuation provides a highly
reliable guarantee against attractor hopping in a system with
multiple coexisting attractors. Formally stated, the present
work sketches an algorithm with the following purpose.

Problem 1: Given a nominal parameters vector p0 and
a nominal orbit x(p0), determine the maximum relative pa-
rameter uncertainty that guarantees persistence of the orbit
x(p0), that is, find the parameters vector p that minimizes
‖(p0 − p)/p0‖∞ while x(p) undergoes a bifurcation.

The vector division in the above definition is intended
element-wise, assuming that all elements of ph are nonzero.
The maximum relative error is a significant robustness measure
in many experimental setups, where parameters correspond to
physical quantities such as masses, densities, etc. The approach
can be easily extended to other error measures.

In the next section we give a short introduction to numerical
continuation. Then, in Section III we sketch the proposed
algorithm, and in Section IV we show an example application.

II. NOTIONS OF NUMERICAL CONTINUATION AND
BIFURCATION ANALYSIS

A generic nonlinear system is written as

ṡ = f(s, p), (1)

where s is the state vector and p is a vector of parameters.
A trajectory of the above system is any solution s(t) of
the differential equation, while an orbit is a set s(T ) with
T ⊂ R. In practice the analysis of a system such as (1) is
frequently focussed on the existence and qualitative structure
of special orbits, such as equilibria, limit cycles, homoclinic
and heteroclinic connections, that characterize the long-term
dynamics of the model. An equilibrium of (1) is a state and
parameter vector satisfying the equation

f(s, p) = 0

Similarly, a periodic orbit is a set of states and a parameter
vector satisfying the boundary value problem

s(0) = s(1)
ṡ = Tf(s, p)

for some T ∈ R+. Both cases above, and most other relevant
orbits, can be written after suitable time-discretization in the
form

F (x, p) = 0, (2)

where x ∈ Rn is the discretized representation of the orbit
and F : Rn+m → Rn. At a regular point of F (x, p) (i.e,
where the Jacobian of F has maximum rank), (2) locally
defines a smooth m-dimensional manifold in Rn+m, each
point on the manifold corresponding to the same orbit for a
different set of parameters. Numerical continuation is a set
of numerical techniques and algorithms suitable to follow an
orbit on such a manifold. Though the techniques used to obtain
efficient and numerically stable schemes can be rather subtle,
the basic approach is as follows. A solution of (2) at a point
(x = x0, p = p0) is assumed to be known, found analytically
or by numerical integration. The parameters p are expressed
as a smooth function of a scalar perturbation π in the form

p = p0 + P (π), P : R→ Rm, P (0) = 0. (3)

The most common choice by far is of the form P (π) :=
[1, 0, 0 . . .]π, i.e. the perturbation is taken along one of the
natural parameters. The function F in (2) becomes F (x, p0 +
P (π)) : Rn+1 → Rn, and its zero set at a regular point
is a one-dimensional smooth manifold. Starting from (x =
x0, π = 0), the manifold is followed by iteratively perturbing
the variables (x, π) in a direction (δx, δπ) (an overview of
effective techniques to construct the perturbation (δx, δπ) is
found e.g. in [10], [11]) and numerically solving the equation

F (x+ δx, p0 + P (π + δπ)) = 0. (4)

Note that this is a much more effective analysis tool than
a simple parameter sweep, since the numerical solution of
(4) allows to ensure the homotopy of the orbits at successive
iterations, avoiding accidental jumps between coexisting and
unrelated orbits, and greatly simplifying the task of following
orbits through parameter ranges where they become unstable.

While an orbit is being followed, its bifurcations can
be detected by checking the value of suitable test functions
H(x, p) : Rn+m → R, functions whose value vanishes at
a bifurcation. For instance, assuming we are following an
equilibrium of (1), the determinant of the Jacobian fs :=
∂f(s, p)/∂s is a test function for a fold bifurcation, where
one real eigenvalue crosses the imaginary axis, while the
determinant of the bialternate product matrix 2fs � In, where
In is the n-dimensional identity matrix, is a test function
for the Hopf bifurcation, where a pair of complex conjugate
eigenvalues crosses the imaginary axis.

Near a bifurcation point, where the test function H(x, p) =
0, the system

F (x, p) = 0
H(x, p) = 0

(5)

defines a smooth m − 1 dimensional manifold of bifurcating
orbits (assuming the bifurcation point is regular). The manifold
can be followed along a one-dimensional curve in the same
way as explained before, by expressing the parameters p as in
(3) but with P (π) : R2 → Rm (i.e., with a two-dimensional
perturbation π), perturbing the state (x, π) in a direction
(δx, δπ), and numerically solving (4).
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A typical numerical continuation analysis thus consists in
following an orbit in parameters up to a point where a test
function vanishes, and then following the bifurcating orbit to
construct a bifurcation diagram. The main idea of this work is
to choose the function P in (3) proportional to the gradient of
a suitable scalar function, and use numerical continuation as a
step in a continuous optimization algorithm, to find a point of
minimum distance of the bifurcation set from a nominal point
in parameter space.

III. ROBUSTNESS TEST

The algorithm sketched in this section attempts to solve
Problem 1 by proceeding through two steps: the first one
seeks a bifurcation near p0 attempting to find a good first
approximation of the nearest bifurcation point; the second
minimizes the distance by following a path of decreasing
distance on the bifurcation manifold.

To begin with, let us simplify the notation through a change
of parameters. Denote by p̃ the original parameters of the
system, so that p̃0 is the vector of the the nominal parameters.
Define f(x, p) := f(x, p̃0(1 + p)), where the product p̃0p is
element-wise. In the parameters p, the nominal system has
p = 0, while p 6= 0 directly represents the relative difference
from the nominal parameters. In this notation, Problem 1
consists in finding the bifurcation point that minimizes the
infinity norm of p.

The first task is to find a bifurcation near p = 0. There
is only a finite number of bifurcations an orbit can undergo;
for example, excluding bifurcations of codimension more than
1, an equilibrium of a smooth and non-symmetric system can
undergo Hopf and fold bifurcations, while a limit cycle can
have Neimark-Sacker, fold, and flip bifurcations. The following
test must be repeated for each possible bifurcation. Chosen a
bifurcation and the corresponding test function H , we first use
(2) and the implicit function theorem to express the orbit x as
a function of the parameters p, and we compute the gradient
Hp := ∂H(x(p), p)/∂p; this gives the direction of maximum
increase of the test function H in the parameters. Function P
in (3) is set equal to πHpsgn(−H(x, p)), so that increasing the
scalar π the orbit locally moves towards H(x, p) = 0 along the
steepest direction. The manifold F (x, p) = 0 is then followed
towards H(x, p) = 0, by numerical continuation, for a fixed
number of steps or until a bifurcation is found. The bifurcation
is excluded if ‖p‖∞ grows beyond a given maximum distance.
This is summarised in Algorithm 1.

Algorithm 1 Location of a Bifurcation
1: xi, pi are the state and parameter vectors at iteration i
2: while H(xi, pi) 6= 0 and ‖pi‖∞ < maximum distance do
3: Hp ← ∂H(x(p),p)

∂p
|x=xi,p=pi

4: P (π) := πHpsgn(−H(xi, pi))
5: continue F (x, pi + P (π)) = 0 in the variables (x, π) for N

steps or until a bifurcation is detected
6: assign to (xi+1, pi+1) the values of the last point of the

numerical continuation
7: end while

The above procedure is simply aimed at finding a good first
guess for the nearest bifurcation point. Clearly, this could be
accomplished by other means, and further investigation might

indeed be useful considering that the gradient method we have
chosen will in principle fail if it finds a maximum or minimum
of H , where Hp = 0. In practice, however, this method has
proved to be quite reliable.

Assuming that a bifurcation is found, the second task is to
move along the bifurcation manifold (defined by equations (5))
towards the point that minimizes ‖p‖∞. To achieve this, we
compute a basis B of the tangent plane at p to the bifurcation
manifold in the space of the parameters, that is, we construct
B as an (m− 1)×m matrix of maximal rank satisfying

∂H(x(p), p)

∂p
B = 0.

As before, x(p) can be constructed using (2) and the implicit
function theorem. Then, we compute the parameter vector α
in span(B) that minimizes ‖α‖∞. This vector, which is the
solution of a linear approximation of Problem 1, can be shown
to be equal to(

I −
[
B|0

][
B|sgn(B(BTB)−1BT p− p)

]−1)
p,

where [a|b] is the matrix obtained by concatenating the
columns of a and b, 0 is the zero vector, and sgn(a) is the
vector of signs of a. We define

d := α− p

and set the function P in (3) equal to (π1d − π2p), so as
to constrain the continuation of F (x, p + P (π1, π2)) = 0
within the plane span(d, p), which contains α. We then follow
(5) by numerical continuation and, calling y a curvilinear
coordinate along the continuation curve, we stop when a
maximum number of continuation steps N is reached or when
∂‖p‖∞/∂y = 0. The procedure is iterated until a stopping
condition is verified (typically, until the norm of (π1, π2) at
the end of a continuation step is smaller than a threshold), as
described in Algorithm 2. Since the procedure above is based

Algorithm 2 Distance Minimization
1: xi, pi are the state and parameter vectors at iteration i
2: while not StopCondition do
3: B ← basis of the tangent space to {H(xi, pi) = 0}
4: α←

(
I −

[
B|0
][
B|sgn(B(BTB)−1BT pi − pi)

]−1)
pi

5: d← α− pi
6: P (π1, π2) := (π1d− π2pi)
7: continue (F (x, pi+P (π1, π2)), H(x, pi+P (π1, π2))) in the

variables (x, π1, π2) for N steps or until ∂‖p‖∞/∂y = 0
8: end while

on a linear approximation of the bifurcation manifold, its speed
of convergence is quadratic in a neighbourhood of the optimal
solution.

IV. APPLICATION TO THE LAUB-LOOMIS MODEL

The algorithms described in the previous section have been
implemented as a Python script using Auto07p [12] for the
numerical continuation and bifurcation detection. The scripts
have been tested on the Laub-Loomis model, which was used
as a test in [5], [8], [9]
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This is a model of a genetic circuit regulated by the
following equations

ẋ =



p1x7 − p2x1x2
p3x5 − p4x2
p5x7 − p6x2x3
p7 − p8x3x4
p9x1 − p10x4x5
p11x1 − p12x6
p13x6 − p14x7.


The model has 7 state variables and 14 pa-
rameters. At the nominal parameter vector p =
(2, 0.9, 2.5, 1.5, 0.6, 0.8, 1, 1.3, 0.3, 0.8, 0.7, 4.9, 23, 4.5)
the system has an unstable focus equilibrium, and a stable
limit cycle, which is the orbit on which the system is expected
to evolve. The authors of [8] found that an error of 0.51%
in the parameters would cause a Hopf bifurcation of the
equilibrium, concluding that at this parameter value the limit
cycle would also disappear, through the same bifurcation.

Running the algorithm described here to test the robustness
of the limit cycle detects a Hopf bifurcation for a relative
parameter error of 0.5091% (at p = [ 1.9898, 0.8954, 2.5127,
1.5076, 0.5969, 0.8041, 1.0051, 1.2934, 0.3015, 0.8041,
0.6964, 4.9249, 22.8829, 4.5229 ]), which is in accordance
with the result of [8], and confirms that no fold, flip, or
Neimark Sacker bifurcation of the limit cycle is found within
a 50% relative perturbation of the nominal parameters.

Though the numerical result of [8] is not improved (it is,
quite likely, a global optimum), the approach presented here
is generally more robust in that it guarantees the homotopy
of the cycle through the whole optimization procedure, and it
allows to follow the limit cycle directly, rather than deducing
its region of existence from that of the equilibrium.

V. CONCLUSION

We have proposed an algorithm to assess the maximum
relative parameter error that a nonlinear model can withstand
without changing its behaviour. We detect a change in the
structure of a relevant orbit by checking its bifurcations. We
obtain our result by using numerical continuation coupled with
a continuous optimization algorithm. The use of numerical
continuation ensures homotopy of the orbit throughout the
optimization process, avoiding the risk of erroneously jumping
between coexisting orbits, while the continuous optimization
algorithm allows to provide a good upper bound to the max-
imum allowable parameter error. Though without a formal
guarantee, in our tests the algorithm appears to find a tight
upper bound.

The algorithm sketched in this work can still be improved,
in particular by addressing some pathological scenarios (high-
lighted in the text) that could prevent it from terminating
correctly. However, more than the specific implementation we
believe that the paradigm we proposed is significant. Our op-
timization algorithm can be easily implemented as an overlay
to existing numerical continuation routines, and as such it
can be applied to test robustness of any orbit and model for
which numerical continuation software exists. These include
smooth ODEs and PDEs [10], [11] as well as piecewise smooth
and hybrid dynamical systems [13]–[15]. Additionally, the set

of parameters over which to run the algorithm is a design
choice available to the user, thus the analysis of robustness
for arbitrary cross sections of the parameter space (e.g., for
pairwise or n-wise parameter perturbations) can be conducted
simply by changing the set of parameters that constitute the
optimization search space.
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